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1. INTRODUCTION 
     Most of the studies performed on natural convection 

heat transfer within enclosed spaces are related to 

buoyancy induced by imposing a heat flux or a 

temperature difference either horizontally or vertically 

from below in examining conventional convection or 

thermal instabilities respectively. Detailed reviews on 

this topic are given by Ostrach, 1988 [1] and Bejan, 2004 

[2]. Several works have also been done where the 
assigned thermal gradient is neither simply horizontal 

nor vertical. Ganzarolli and Milanez, 1995 [3] have 

studied on rectangular cavities heated from below and 

cooled along both sides. Aydin et al., 1995 [4] have 

investigated the effects of heating from one side and 

cooled from top of a rectangular cavity. In the 

above-cited works, untilted cavity has been considered. 

Inclination effects may be of interest in many science and 
engineering applications. The buoyancy force 

components change with orientation, which may cause 

transition between different flow patterns and may 

change heat transfer rates considerably. Ciafrini et al., 

2005 [5] studied the thermal behaviour of inclined square 

cavity with two adjacent sides heated (both at same 

temperature), and the other two adjacent sides cooled 

(both at same temperature). Through heat transfer 
measurements, Hollands and Konicek, 1973 [6] 

confirmed a changeover angle, at which it was 

presumably caused by a transition between two different 

flow patterns. Arnold et al., 1976 [7] also demonstrated 

the existence of this changeover phenomenon. Soong et 

al., 1996 [8] have studied numerically the mode 

transition of natural convection in inclined cavities.  

Catton et al., 1974 [9], by using Galerkin method, solved 
two-dimensional flow and temperature fields in inclined 

cavities of various aspect ratios. However, only limited 

information about the flow pattern is provided. In the 

present work, the natural convection in air within 

inclined square enclosure has been considered. Two 

adjacent walls of the enclosure are heated whereas the 

other two walls are cooled isothermally. The mass and 

momentum conservation equations are in stream 

function-vorticity form. These equations along with 
energy conservation equations are discretised using finite 

element method. The influences of Rayleigh number and 

inclination angle on the temperature distribution, flow 

pattern, and heat flux have been discussed. 

 

2. ANALYSIS 
     

 

Fig 1. Computational domain and coordinate system. 

     Consider an air-filled square cavity of side L. Two 

adjacent walls are maintained at temperature TH, while 
the two opposite walls cooled to temperature TC. The 
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corresponding non-dimensional temperatures are θH=1 

and θC=0.5 respectively. The computational domain with 

coordinate system is depicted in Fig. 1. 2 -D laminar flow, 

with constant fluid properties and negligible viscous 

dissipation, is considered. No slip condition is assumed 

at four walls of the cavity and Boussinesq approximation 
is employed for gravity terms in the momentum 

conservation equation. The governing Navier-Stoke‟s 

equations in stream function-vorticity form are 
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For 2-D steady state, constant fluid properties without 

internal heat generation, and negligible viscous 

dissipation, the energy conservation equation can be 

expressed as, 
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The boundary conditions are 

,0     at all walls                                                         (4) 
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(where,  i , J represents a point on the wall, and  i, J+1 

represents a point on an adjacent layer at a distance y 
from the wall [2]) 
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The following parameters are used for expressing above 
governing equations in dimensionless form.  
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Using the above dimensionless quantities, the governing 

equations can be expressed as, 
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and the boundary conditions are 

0*   ,    at all walls                                                           (12) 
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3. NUMERICAL PROCEDURE 

     The computational domain is represented by 2121 
nodes and 800 linear triangular elements. All the 

governing equations for mass, momentum and energy 

conservation are numerically discretized in the 

computational domain using above-mentioned triangular 

elements. The triangular elements taken here are linear 

isoparametric and all the variables like *, *, u*, v* 

and  at any point within the element are expressed in 
terms of the nodal values by using the linear shape 

functions. The same shape functions are used to get the 
coordinates at any point within the element in terms of 

the nodal coordinates. The shape functions are used to 

seek an approximate solution which introduces an error 

called the residual. The Galerkin‟s method is presented 

as one of the weighted residual methods where the 

residual is set to zero relative to a weighting function. 

First, the element equations are developed using 

Galerkin‟s method and then assembled in order to get 
equations for the whole computational domain. The 

isothermal boundary conditions for all the walls are 

imposed, which modifies both the conductivity matrix 

and heat rate vector appropriately. The governing 

equations for momentum (Eqn. 10) and energy 

conservation (Eqn. 11) are coupled through source terms. 

Therefore the solution of the above equations can only be 

obtained through iteration. The flow chart of numerical 
procedure has been outlined in Fig. 2. During the 

numerical investigation, it is experienced by the authors 

that, under-relaxation of momentum equation and energy 

equation is required for obtaining the convergence.  
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Fig 2. Flow chart for solving the problem 
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Table 1: Comparison of present prediction with 

benchmark solution 

 

Quantities Benchmark Present Deviation 

Ra=103 

umax 

(x,y) 

3.649 

(0.5, 0.813) 

3.632 

(0.5,0.8) 

-0.46% 

vmax 

(x,y) 

3.697 

(0.181, 0.5) 

3.657 

(0.15,0.5) 

-1.08% 

Nu 1.118 1.115 -0.29% 

Numax 1.505 1.499 -0.38% 

Numin 0.692 0.692 0.0% 

 

Ra=104 

umax 

(x,y) 

16.178  

(0.5, 0.823) 

16.506  

(0.5,0.85) 

2.02% 

vmax 

(x,y) 
19.617 
(0.119, 0.5) 

19.330 
(0.15,0.5) 

-1.46% 

Nu 2.243 2.250 0.33% 

Numax 3.528 3.567 1.10% 

Numin 0.586 0.576 1.66% 

 

The code used here was validated against the benchmark 

solution of G. de Vahl Davis, 1983 [10]. The natural 

convection of air in a square cavity with the boundary 

conditions prescribed in the benchmark solution is 

solved for Ra=103 and 104. The present predictions and 
the corresponding benchmark solutions are depicted in 

Table 1. The accuracy of the solution, which has been 

tested from the energy balance for the cavity and the 

validation stated above, does not encourage the authors 

to work with very fine mesh size at the cost of 

computational time. 

Once the convergence is reached, the Nusselt numbers of 

the hot wall and cold wall are calculated using the 
following expressions: 
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     It may be noted that at the steady-state condition, the 

Nusselt numbers NuHY and NuCY (for the hot and cold 

walls along y-direction respectively) are taken as the 

average Nusselt number Nux across the cavity along the 

x-direction, and that the Nusselt numbers NuHX and NuCX 

(for the hot and cold walls along x-direction respectively) 

are considered as the average Nusselt number Nuy across 
the cavity along the y-direction. 

Nux = NuHY = NuCY 

Nuy = NuHX = NuCX 

     In addition, also the average Nusselt number Nu of 

the whole enclosure is calculated as, 

Nu =0.5(Nux  +Nuy) 

 

3. RESULTS AND DISCUSSION 
     Numerical simulations are performed for Pr=0.71, 

which corresponds to air, and for different values of 

Rayleigh number in the range of 103  Ra  105, and of 

the inclination angle of the cavity in the range of 0    

360. In the figures for isotherm and velocity vector plots, 
the hot wall along x-axis is represented as „HX‟ and that 

along y-axis is represented as „H‟ to make clear the walls 

at different inclined positions. The contour lines of 

isotherm plots correspond to equally spaced values of  
in the range between 1 and 0.5. The velocity vectors are 
plotted with a fixed scale for comparison of magnitude of 

the velocities. As far as heat transfer rates are concerned, 

the variation of average Nusselt number versus 

inclination angle is reported for different Rayleigh 

numbers. The results may be analysed and discussed as 

follows. 

 

3.1 Effect Of Rayleigh Number  
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Fig  3. Isotherms and velocity vectors for (a) Ra=103, (b) 

Ra=104, (c) Ra=105 (at =0) 
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Fig 4. Average Nusselt number (Nu) vrs Inclination 

angles () (Ra=103, Ra=104, Ra=105) 
 

     At γ=0°, for lower value of Rayleigh number, say 103, 

the curvature of the isotherms are not large as shown in 

Fig. 3(a), which implies less effect of convection. 
Keeping hot wall temperature constant, increase in 

Rayleigh number implies increased size of the enclosure, 

which strengthens buoyancy effect. As Rayleigh number 

increases, the clockwise motion increases and the 

curvature of the isotherms increase as seen from the Figs. 

3(b) and 3(c). The motion of the fluid is almost uniform 

throughout the enclosure except at the center and all the 

corners and the velocity is increased as Ra is increased. 
As motion of the fluid increases, more amount of heat is 

taken away from the hot wall to the cold wall. So for any 

inclined position, the heat transfer rate increases as 

Rayleigh number increases (Fig. 4). 

 

3.2 Effect Of Inclination Angle 
3.2.1 Inclination angle in the range 0 ≤  ≤ 45 

 
     As the inclination angle of the enclosure γ increases, 

the clockwise fluid motion progressively slows down. 

This is due to the increasing buoyant action driven by hot 

wall and cold wall in the x-direction, which would tend 

to impose an anticlockwise fluid circulation. The 

buoyant force is directed towards the core with increase 

in γ. The buoyancy force pushes the fluid near the walls 

towards the core. So the stagnant core gets motion and 
the motion in the core is more compared to that near the 

wall. The single-cell flow pattern gets more and more 

distorted, due to the progressive enlargement of the 

quasi-stagnant regions at the bottom and top corners of 

the enclosure (Fig. 5). As far as heat transfer rate is 

concerned, it is almost of pure conduction for Ra=103. 

For higher Rayleigh numbers, the heat transfer rate 

decreases continuously from 0° to 45° (Fig. 4). This is 
due to the fact that more fluid is circulated inside the core 

rather than near the wall. So less amount of fluid take part 

in carrying the heat from hot walls towards the cold 

walls. 

 

 
(a) γ =11.25° 

 
(b) γ = 33.75° 

 

    
 

(c) γ = 45° 

 

Fig 5. Isotherms and velocity vectors for Ra=105 (at  
=11.25°, 33.75°, 45°) 

 

 
3.2.2 Inclination angle in the range 45°<γ≤90° 

 

 
Fig. 6 Isotherms and velocity vectors for Ra=105 (at  = 

78.75°) 

 

     As γ is increased more than 45°, the isotherms and 

velocity vector plots at any inclination angle γ are same 
as those corresponding to the inclination angle (90°−γ), 

but the motion is anti-clockwise (Fig. 6). The average 

heat transfer rate is same as that for angle (90°−γ) (Fig. 

4). 
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3.2.3 Inclination angle in the range 90°<γ≤180° 

 
 

(a)  γ =135° 

 
 

(b) γ = 157.5° 

          
 

(c) γ==180° 

 

Fig 7. Isotherms and velocity vectors for Ra=105 (at γ 

=135°, 157.5°, 180°) 

 

     As γ is increased beyond 90°, the buoyant action 

driven by the hot walls and cold walls along y-direction 
and that driven by the hot walls and cold walls along 

x-direction, are in the same direction, thus leading to a 

faster circulation of the fluid. At γ=135°, a typical 

boundary layer motion around a motionless core may be 

well distinguished Fig. 7(a). Also the isotherm pattern 

gives core stratification similar to that typical for vertical 

enclosures with differentially heated sidewalls. In 

contrast, as γ is further increased, the strength of the fluid 
circulation decreases as the thermal driving-force 

brought about by both hot wall & cold wall along 

x-direction progressively decreases (Fig. 7b). 

     At γ=180°, a pronounced fluid stratification, which 

derives from the over-stabilizing effect induced by the 

downward -imposed vertical temperature gradient, may 

be observed (Fig. 7c). As far as the heat transfer rates are 

concerned, it can be noticed that the Nusselt number Nu 

increases from 90 up to 135 and then decreases. 
 
 

 
 
 

 
 
 

3.2.4 Inclination angle in the range 180°<γ≤225° 

 
 

(a) γ = 202.5° 

 
 

(b) γ = 225° 

 

Fig  8. Isotherms and velocity vectors for Ra=105 (at γ = 
202.5°, 225°) 

     As γ is increased from 180°, the thermal driving 

actions delivered by the two hot walls are in contrast with 

one another, thus tending to cancel each other out. The 

same consideration applies to the cold walls. So the 

motion of the fluid in the enclosure slows down, which 

can be seen from the Fig. 8. The isotherms are nearly 

straight, representing less convection. Due to slow down 
of fluid motion, the rate of heat transfer decreases (Fig. 4). 

At γ=225°, a practically motionless conductive field is 

observed (Fig. 8b). 

     It is interesting to note that at γ=225°, Nu reach the 

value typical of pure conduction which would derive 

from the solution of only the equation of energy. 

 
3.2.5 Inclination angle in the range 225°<γ<360° 

 

 
 

 

Fig  9. Isotherms and velocity vectors for Ra=105 (at γ = 
292.5°) 

     As γ exceeds 225°, the isotherms and velocity vector 

plots at any inclination angle γ are same as those 

corresponding to the inclination angle (450° −γ), but the 

motion is clockwise (Fig. 9 and Fig. 7b). For this, the 

heat transfer rate is similar to that for the positions in the 

range 90°<γ<225° (Fig. 4).  
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4. CONCLUSIONS 
Natural convection in air-filled, inclined square 

enclosures with two adjacent walls heated and the other 

two walls cooled is numerically studied. The following 

conclusions are made from the study. 

 For a sufficiently wide range of  around 135, the 
overall heat transfer along x-direction across the 

enclosure is larger than that corresponding to normal 

case, i.e.,  =0.  

 For a sufficiently wide range of  around 315, the 

overall heat transfer along x-direction across the 
enclosure is larger than that corresponding to normal 

case, i.e.,  =0.  

 The overall heat transfer in the enclosure is almost 

same around 0and 90.The overall heat 

transfer is maximum slightly before 0 and slightly 

after 90and both are of same magnitude. 

 For =225, the Nusselt number is same as that for 
pure conduction. 

 All the observations noted above are not significant 

for Ra=103 as the convection effect is not prominent. 
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6. NOMENCLATURE 
 

Sym

bol 

Meaning Unit 

g Acceleration due to gravity  (m/s2) 

k Thermal conductivity (W/mK) 

L Length of each side of the cavity (m) 

Pr Prandtl Number (dimensionless) (--) 
q Heat flux (W/m2) 

Q Heat flux (dimensionless) (--) 

Ra Rayleigh Number (dimensionless) (--) 

T Temperature (K) 

u Velocity component along 

x-direction 

(m/s) 

u* Velocity component along 

x-direction (dimensionless) 

(--) 

v Velocity component along 

y-direction 

(m/s) 

v* Velocity component along 

y-direction (dimensionless) 

(--) 

x Co-ordinate in x-direction (m) 

X Co-ordinate in x-direction 

(dimensionless) 

(--) 

y Co-ordinate in y-direction (m) 
Y Co-ordinate in y-direction 

(dimensionless) 

(--) 

α Thermal diffusivity (m2/s ) 

β Volumetric co-efficient of thermal 

expansion 

(K-1) 

γ Inclination angle of the cavity () 
ν Kinematic viscosity (m2/s) 

θ Temperature (dimensionless) (--) 

ρ Density (kg/m3) 
ω Vorticity (s-1) 

ω* Vorticity (dimensionless) (--) 

 Stream function (m2/s) 

* Stream function (dimensionless) (--) 

 

Subscripts 

c= Conduction  
C=Cold wall 

H= Hot wall  
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